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Abstract. In the Wick-Cutkosky model the coupling constant is given as a Taylor series in 
powers of the centre of mass energy s. The series which is convergent in Is/ < 4 is continued 
by means of Pad6 approximants to the whole cut s-plane. The convergence of the Pad6 
approximants is demonstrated, and agreement is found with results found before by 
different methods. 

1. Introduction 

The recent development in bound state models of hadrons has renewed the interest in 
solving the relativistic Bethe-Salpeter equation. Unfortunately, all physically interest- 
ing equations of this type are solvable only by highly complicated numerical procedures. 
Therefore it might be useful to investigate the models which can be solved analytically 
in order to gain insight into the more complicated models. 

The outstanding model in this context is the Wick-Cutkosky model (Wick 1954, 
Cutkosky 1954), since in this model the interaction is motivated by field-theoretic 
arguments (exchange of a massless boson). For s = 0 its solution can be written in closed 
form (Wick 1954), whereas for s # 0 a series expansion in s for the coupling constant A 
has been given by zur Linden (1969) up to arbitrary order in s. A similar method has 
been used by Tanaka and Nakanishi (1975). This series is found to be convergent in 

Its circle of convergence is limited by a branch point at s = 4 with an associated cut 
extending from there to infinity. The occurrence of this cut may be understood as 
follows. Suppose we start with a coupling constant such that s < 4. If we decrease A the 
mass of the bound state will rise until s reaches the threshold for pair production at 
s = 4. The mass of the bound state will move into the complex s-plane thus forming a 
resonance. If we insist on s staying real, this will only be possible for a complex A. So we 
get a cut in the function A = A (s). This will happen every time a new channel opens. So 
in the Wick-Cutkosky model, A(s) will have an infinite number of branches glued 
together along the cut extending from s = 4 to infinity because at s = 4 an infinite 
number of channels open due to mass zero of the exchanged bosons. 

In field theory one would expect a corresponding left-hand cut starting at s = 0 
originated from the crossed channels. It will be absent in the Wick-Cutkosky model 
due to lack of crossing invariance. So the above mentioned cut is the only singularity in 
the complex s-plane which is expected on physical grounds. 

[S I  <4 .  
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Consequently, zur Linden (1971) demonstrated that one is able to find an expansion 
for A (s) convergent in the whole cut s-plane by a conformal mapping of the cut s-plane 
onto the unit circle. The cut is thereby mapped on the boundary of the circle. 

In this paper, we propose a different method for the continuation of the solution. 
Starting with the series expansion for A(s) in powers of s, we construct the Pad6 
approximants from the Taylor coefficients. For a review of Pad6 approximants see e.g. 
Baker (1975). Since we expect A (s) to be meromorphic outside the cut we can hope for 
convergence of the Pad6 approximants in the whole cut s-plane. The numerical 
calculations show that this is indeed true. Our results are in complete agreement with 
those found by zur Linden (1 97 1). 

The use of Pad6 approximants in strong interaction physics has been quite numerous 
in recent years (for a review see e.g. Basdevant 1973). But all these applications are 
different in spirit from the work presented here. Usually, the perturbation series for the 
T matrix is considered, and the Pad6 approximants are formed from their coefficients. 
The position of bound states is then inferred from the zeros of the denominator. We, 
however, study the coupling constant as a function of the bound state mass. This is 
possible because of the simple structure of the Wick-Cutkosky model. 

In the next section we give the recurrence relations for the Taylor coefficients of 
A(s). The Pad6 approximants are constructed from it in 0 3, and the results are 
exhibited. 

2. Series expansion of X(s) 

In order to keep the paper sufficiently self-contained, we give in this section the 
recurrence relation for the Taylor coefficients of A (s). The derivation can be found in 
zur Linden (1969). The Wick-Cutkosky model is defined by the Bethe-Salpeter 
equation 

The Wick rotation to four-dimensional Euclidean space has already been performed in 
(2.1). q is related to the centre of mass energy s by s = 4q2,  and we have assumed the 
masses of the constituents to be equal to 1 thus fixing the momentum scale. The 
unequal mass case may be reduced to this case (Cutkosky 1954). We investigate the 
coupling constant A as a function of the bound state mass q 2 .  The coefficients in the 
expansion 

may be calculated from the recurrence relation 

A m  = (n  + 2 q + p +  l)(n + 2 q + p + 2 )  

x ( u q m  + D q t l a q + l , m - l  + D q a q , m - l  + D ; - l a q - l , m - l )  

with the definitions 

uqo = 1; uq, = o  ( j Z 0 ) ;  q o = O  ( i # q )  
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D(m, n )  = 
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f m  f m + l  * * * f m + n  

f m + l  fm+2 * * fm+n+l 
’ 

fm+n f m + n + l  * * * fm+2n 

m - 1  

r = l q - r l  
arm =( -(n + 2 r  + p  + l)(n + 2 r  + p  + 2 )  

x ( D  ,+ 1 a r+  l , m  - 1 + DP r,m - 1 + 0:- 1 a r -  1 , m  - 1 

x [(n + 2r + p  + l)(n + 2r + p  + 2 )  -(n + 2 q  + p  + l ) (n  + 2 q  + p  +2)1-’. 
(2 .5 )  

The coefficients D:, D, can be found in zur Linden (1969). The solutions are labelled 
by the quantum numbers n and k = 29 + p .  The numerical effort in computing Am to 
arbitrary order is minimal. An analytic computation of A m  by using the symbolic 
programming language REDUCE (Hearn 1973) has revealed no deeper insight into the 
structure of Am besides that of rapidly increasing complication. 

Since we are going to form Pad6 approximants it is of some interest to know whether 
the series ( 2 . 2 )  is a Stieltjes series. A series 

ot 

f ( z ) =  c f,(-z)’ 
1=0 

is a series of Stieltjes if and only if (Baker 1975) 

D(0, n )  > 0 D(1, n)>O n = 0 , 1 , .  . . 

(2.9) 

( 2 . 1 0 )  

Unfortunately, we have found this only numerically and have no mathematical proof 
for it. But taking this for granted, we find 

~ ( o ,  ~ ) = A , A ~ - A : < o  (2.11) 

and hence the series ( 2 . 2 )  is not of the Stieltjes type. 

3. Pade approximation for A(s) 

With the coefficients A, calculated from the recurrence relations (2 .3 )  and (2 .5 ) ,  we can 
construct the Taylor series for A (s) from (2.2). The series is convergent inside the unit 
circle /q21 = 1 i.e. for s < 4. The function A (s) in different regions of the s-plane may be 
calculated from it by using the Pad6 approximation. 
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The [N, M] PadC approximation f””l(z) to a function f ( z )  is the ratio of two 
polynomials PN(z) ,  Q&) of degree N and M respectively, which has the same N + M  
first derivatives as f ( z )  at z = 0: 

fNsMI(z)  = P N ( Z ) / Q & & )  = f ( z )  + O(ZN+‘w+l). (3.1) 

The various approximations may be calculated most efficiently by using Wynn’s formula 
(see Baker 1975): 

N+l .M1(Z)  -fNsMl(z ))-I + ( f N - l . M 1 ( z )  - f N M ( z )  (f 

The approximations fNso’(r) are given by the partial sums of the Taylor series. If we 
formally define f - I S N 1 ( z )  = 0, f”-”(z) = 03 the successive approximations are calcu- 
lated from (3.2) according to the following scheme: 

f?’ol 

5‘ 1’01 
f r2.01 

fI0.21 

The convergence may be tested numerically in different ways. We have chosen to 
investigate the ‘diagonal’ approximations f N * N 1 ( z )  for increasing values of N. 

Once the Taylor coefficients A,  ( i  = 1, 100) are known from (2.3) and (2.5), the PadC 
approximations up to N = 50, M = 50 are calculated in less than a second of computing 
time. As would be expected the approximation converges in the whole s-plane outside 
the cut, The rapidity of the convergence depends on the separation of the respective 
value s from the cut. Similarly, the convergence gets slower as s+-a since the 
asymptotic behaviour of A (s) is certainly not given by a simple power law which is the 
only behaviour to be reproduced by the Pad6 approximation. To illustrate the speed of 
convergence, it will suffice to say that we have a six figure accuracy already from the 
[6,6]-approximation at T~ = -10 which is far outside the convergence circle of the 
Taylor series. 

The results for various quantum numbers n, k are shown in figure 1. In this figure we 
have changed the variables v2,  A to E ,  A by the transformation 

E = [l - (1 - 7)2)1’2]/[ 1 + (1 - 712)1’2] 

A(€) = (1 +€)*A ( v 2 )  
(3.3) 

(3.4) 
so that for q 2  = 1, E = 1 and for q 2  = -03, E = -1. These variables have been used by zur 
Linden (1971) for his conformal mapping, so it will be simpler to compare his results 
with ours. We find complete agreement. 

The Regge trajectories n = n ( ~ ~ )  which are degenerate for different values of I are 
found by keeping A fixed. The leading trajectory is shown in figure 2. Again we find no 
deviation from zur Linden’s results. Unfortunately, we are not able to extend the 
trajectory beyond q 2 =  1 since the Pad6 approximation does not converge in that 
region. We have not shown the daughter trajectories since they are also in agreement 
with previous results. 

Summarizing, we have demonstrated the possibility of solving the Wick-Cutkosky 
model by a PadC approximation. The results are identical to those obtained by 
conformal mapping of the s-plane. We believe that our method will be superior if the 
exchanged particle has non-zero mass since then the analytic structure of A (s) will be 
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E 

Figure 1. The coupling constant A as a function of E for the lowest eigenvalues. The 
quantum numbers (n, k )  are given in parentheses. 
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Figure 2. The leading trajectory no(<) for several values of the coupling constant. 
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more involved (cuts starting at s = (2+np)’ ,  n = 1,2 ,  , . .)). The best thing in this case 
might be the use of Pad6 approximations of the second kind (see Baker 1975) because in 
this more general case one cannot construct explicitly the Taylor series for A (s) around 
s = 0. The investigation of this possibility will, however, be left to a future publication. 
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